CARBON FIBER LIFE CYCLE ASSESSMENT

All materials have a similar life cycle:

	Carbon fiber	Steel
Fatigue:	+	+
Corrosion Resistance:	+	-
Durability:	+	+
Energy cost		+
	X14	
Recyclable:	0	+

Carbon fiber use has strongly developed in the past few years: 80% for aeronautics parts and car parts for example.

Numerous advantages

LOW WEIGHT

HIGH STRENGHT

MORE FUEL EFFICIENCY

The recycling of carbon fiber is a problem:

Recycling process developments:

• **Pyrolysis:** Carbon fiber is heated to extremely hot temperatures in an oxygenless environment

• Milling or shredding: is just as effective, but leaves you with a shorter fiber

• Vapor-thermolysis: process of separating carbon fibers from the polymer matrix (resin) using superheated steam.

• **Solvolysis:** treating a polymer matrix composite with a reactive solvent capable of depolymerizing the resin.